Publications

My publications are listed below. You can also download a full pdf.

2025


  1. Zotos, L., van Rijn, H., & Nissim, M. (2025). Can Model Uncertainty Function as a Proxy for Multiple-Choice Question Item Difficulty? Proceedings of COLING 2025. Abu Dhabi.

2024


  1. Shi, S., Matusevych, Y., & Nissim, M. (2024). Choosy Babies Need One Coach: Inducing Mode-Seeking Behavior in BabyLlama with Reverse KL Divergence. Proceedings of the BabyLM Challenge at the 28th Conference on Computational Natural Language Learning.

  2. Rinaldi, M., Gili, J., Francis, M., Goffetti, M., Patti, V., & Nissim, M. (2024). Mult-IT Multiple Choice Questions on Multiple Topics in Italian: A CALAMITA Challenge. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), Pisa, Italy. CEUR Workshop Proceedings (CEUR-WS. org).

  3. Attanasio, G., Basile, P., Borazio, F., Croce, D., Francis, M., Gili, J., … others. (2024). CALAMITA: Challenge the Abilities of LAnguage Models in ITAlian. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), Pisa, Italy. CEUR Workshop Proceedings (CEUR-WS. org).

  4. Sarti, G., Caselli, T., Bisazza, A., & Nissim, M. (2024). EurekaRebus - Verbalized Rebus Solving with LLMs: A CALAMITA Challenge. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), Pisa, Italy. CEUR Workshop Proceedings (CEUR-WS. org).

  5. Francis, M., Rinaldi, M., Gili, J., De Cosmo, L., Iannaccone, S., Nissim, M., & Patti, V. (2024). GATTINA-GenerAtion of TiTles for Italian News Articles: A CALAMITA Challenge. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), Pisa, Italy. CEUR Workshop Proceedings (CEUR-WS. org).

  6. Sarti, G., Caselli, T., Nissim, M., & Bisazza, A. (2024). Non Verbis, Sed Rebus: Large Language Models Are Weak Solvers of Italian Rebuses. Proceedings of the 10th Italian Conference on Computational Linguistics. CEUR Workshop Proceedings (CEUR-WS. org).

  7. Scalena, D., Fersini, E., & Nissim, M. (2024). A gentle push funziona benissimo: making instructed models in Italian via contrastive activation steering. Proceedings of the 10th Italian Conference on Computational Linguistics. CEUR Workshop Proceedings (CEUR-WS. org).

  8. Sarti, G., Feldhus, N., Qi, J., Nissim, M., & Bisazza, A. (2024). Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit. Joint Proceedings of the 2nd World Conference on EXplainable Artificial Intelligence Late-Breaking Work, Demos and Doctoral Consortium, XAI-2024: LB/D/DC, 289–296. CEUR Workshop Proceedings (CEUR-WS. org).

  9. Scalena, D., Sarti, G., & Nissim, M. (2024). Multi-property Steering of Large Language Models with Dynamic Activation Composition. In Y. Belinkov, N. Kim, J. Jumelet, H. Mohebbi, A. Mueller, & H. Chen (Eds.), Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP (pp. 577–603). Miami, Florida, US: Association for Computational Linguistics.

  10. Stopponi, S., Pedrazzini, N., Peels-Matthey, S., McGillivray, B., & Nissim, M. (2024). Natural Language Processing for Ancient Greek. Diachronica, 41, 414–435.

  11. Stopponi, S., Peels-Matthey, S., & Nissim, M. (2024). Viability of Automatic Lexical Semantic Change Detection on a Diachronic Corpus of Literary Ancient Greek. In C. Swaelens, M. Deforche, I. De Vos, & E. Lefever (Eds.), The First Workshop on Data-driven Approaches to Ancient Languages (DAAL 2024) (pp. 47–57). Ghent University.

  12. Stopponi, S., den Ouden, M., Peels-Matthey, S., & Nissim, M. (2024). AGALMA, the Ancient Greek Accessible Language Models for linguistic Analysis.

  13. Lai, H., & Nissim, M. (2024). mCoT: Multilingual Instruction Tuning for Reasoning Consistency in Language Models. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 12012–12026). Bangkok, Thailand: Association for Computational Linguistics.

  14. Occhipinti, D., Marchi, M., Mondella, I., Lai, H., Dell’Orletta, F., Nissim, M., & Guerini, M. (2024). Fine-tuning with HED-IT: The impact of human post-editing for dialogical language models. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), Findings of the Association for Computational Linguistics ACL 2024 (pp. 11892–11907). Bangkok, Thailand and virtual meeting: Association for Computational Linguistics.

  15. Li, Y., Lai, H., Toral, A., & Nissim, M. (2024). ReproHum #0033-3: Comparable Relative Results with Lower Absolute Values in a Reproduction Study. In S. Balloccu, A. Belz, R. Huidrom, E. Reiter, J. Sedoc, & C. Thomson (Eds.), Proceedings of the Fourth Workshop on Human Evaluation of NLP Systems (HumEval) @ LREC-COLING 2024 (pp. 238–249). Torino, Italia: ELRA and ICCL.

  16. Mondella, I., Lai, H., & Nissim, M. (2024). ReproHum #0892-01: The painful route to consistent results: A reproduction study of human evaluation in NLG. In S. Balloccu, A. Belz, R. Huidrom, E. Reiter, J. Sedoc, & C. Thomson (Eds.), Proceedings of the Fourth Workshop on Human Evaluation of NLP Systems (HumEval) @ LREC-COLING 2024 (pp. 261–268). Torino, Italia: ELRA and ICCL.

  17. Sarti, G., & Nissim, M. (2024). IT5: Text-to-text Pretraining for Italian Language Understanding and Generation. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 9422–9433). Torino, Italia: ELRA and ICCL.

  18. Sarti, G., Chrupała, G., Nissim, M., & Bisazza, A. (2024). Quantifying the Plausibility of Context Reliance in Neural Machine Translation. The Twelfth International Conference on Learning Representations (ICLR 2024). Vienna, Austria: OpenReview.

  19. Stopponi, S., Peels-Matthey, S., & Nissim, M. (2024). AGREE: a new benchmark for the evaluation of distributional semantic models of ancient Greek. Digital Scholarship in the Humanities, 39, 373–392.

  20. Sivak, E., Pankowska, P., Mendrik, A., Emery, T., Garcia-Bernardo, J., Höcük, S., … Stulp, G. (2024). Combining the strengths of Dutch survey and register data in a data challenge to predict fertility (PreFer). Journal of Computational Social Science, 1–29.

  21. Eikelboom, S., Esteve-Del-Valle, M., & Nissim, M. (2024). Learning from climate change news: Is the world on the same page? Plos One, 19, e0297644.

  22. Lai, H., & Nissim, M. (2024). A Survey on Automatic Generation of Figurative Language: From Rule-based Systems to Large Language Models. ACM Computing Surveys.

2023


  1. Mollanorozy, S., Tanti, M., & Nissim, M. (2023). Cross-lingual Transfer Learning with Persian. In L. Beinborn, K. Goswami, S. Muradoğlu, A. Sorokin, R. Kumar, A. Shcherbakov, … E. Vylomova (Eds.), Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (pp. 89–95). Dubrovnik, Croatia: Association for Computational Linguistics.

  2. Lai, H., Toral, A., & Nissim, M. (2023). Multidimensional evaluation for text style transfer using ChatGPT. ArXiv Preprint ArXiv:2304.13462.

  3. Belz, A., Thomson, C., Reiter, E., Abercrombie, G., Alonso-Moral, J. M., Arvan, M., … Yang, D. (2023). Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP. In S. Tafreshi, A. Akula, J. Sedoc, A. Drozd, A. Rogers, & A. Rumshisky (Eds.), Proceedings of the Fourth Workshop on Insights from Negative Results in NLP (pp. 1–10). Dubrovnik, Croatia: Association for Computational Linguistics.

  4. Minnema, G., Lai, H., Muscato, B., & Nissim, M. (2023). Responsibility Perspective Transfer for Italian Femicide News. In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), Findings of the Association for Computational Linguistics: ACL 2023 (pp. 7907–7918). Toronto, Canada: Association for Computational Linguistics.

  5. Lai, H., Toral, A., & Nissim, M. (2023). Multilingual Multi-Figurative Language Detection. In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), Findings of the Association for Computational Linguistics: ACL 2023 (pp. 9254–9267). Toronto, Canada: Association for Computational Linguistics.

  6. Wang, C., Lai, H., Nissim, M., & Bos, J. (2023). Pre-Trained Language-Meaning Models for Multilingual Parsing and Generation. In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), Findings of the Association for Computational Linguistics: ACL 2023 (pp. 5586–5600). Toronto, Canada: Association for Computational Linguistics.

  7. Bacco, L., Dell’Orletta, F., Lai, H., Merone, M., & Nissim, M. (2023). A text style transfer system for reducing the physician–patient expertise gap: An analysis with automatic and human evaluations. Expert Systems with Applications, 233, 120874.

  8. Caselli, T., Lieto, A., Nissim, M., & Patti, V. (2023). Sono solo parole. ChatGPT: anatomia e raccomandazioni per l’uso. Sistemi Intelligenti, 35, 307–320.

  9. Scalena, D., Sarti, G., Nissim, M., & Fersini, E. (2023). Let the Models Respond: Interpreting Language Model Detoxification Through the Lens of Prompt Dependence. Proceedings of BlackBox NLP at EMNLP 2023.

  10. Li, Y., Lai, H., Toral, A., & Nissim, M. (2023). Same Trends, Different Answers: Insights from a Replication Study of Human Plausibility Judgments on Narrative Continuations. In A. Belz, M. Popović, E. Reiter, C. Thomson, & J. Sedoc (Eds.), Proceedings of the 3rd Workshop on Human Evaluation of NLP Systems (pp. 190–203). Varna, Bulgaria: INCOMA Ltd., Shoumen, Bulgaria.

  11. Stopponi, S., Pedrazzini, N., Peels, S., McGillivray, B., & Nissim, M. (2023). Evaluation of Distributional Semantic Models of Ancient Greek: Preliminary Results and a Road Map for Future Work. In A. Anderson, S. Gordin, B. Li, Y. Liu, & M. C. Passarotti (Eds.), Proceedings of the Ancient Language Processing Workshop (pp. 49–58). Varna, Bulgaria: INCOMA Ltd., Shoumen, Bulgaria.

  12. Caselli, T., Lieto, A., Nissim, M., & Patti, V. (2023). They are just words. ChatGPT: Anatomy and recommendations for use. Sistemi Intelligenti, 35, 307–320.

  13. Bacco, L., Minnema, G., Caselli, T., Dell’Orletta, F., Merone, M., & Nissim, M. (2023). On the instability of further pre-training: Does a single sentence matter to BERT? Natural Language Processing Journal, 5, 100037.

  14. de Vries, W., Wieling, M., & Nissim, M. (2023). DUMB: A Benchmark for Smart Evaluation of Dutch Models. In H. Bouamor, J. Pino, & K. Bali (Eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (pp. 7221–7241). Singapore: Association for Computational Linguistics.

  15. Sarti, G., Feldhus, N., Sickert, L., Van Der Wal, O., Nissim, M., & Bisazza, A. (2023). Inseq: An interpretability toolkit for sequence generation models. ArXiv Preprint ArXiv:2302.13942.

2022


  1. de Vries, W., Wieling, M., & Nissim, M. (2022). Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 7676–7685). Dublin, Ireland: Association for Computational Linguistics.

  2. Sarti, G., & Nissim, M. (2022). It5: Large-scale text-to-text pretraining for italian language understanding and generation. ArXiv Preprint ArXiv:2203.03759.

  3. Minnema, G., Gemelli, S., Zanchi, C., Caselli, T., & Nissim, M. (2022). SocioFillmore: A Tool for Discovering Perspectives. In V. Basile, Z. Kozareva, & S. Stajner (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations (pp. 240–250). Dublin, Ireland: Association for Computational Linguistics.

  4. Lai, H., Toral, A., & Nissim, M. (2022). Multilingual Pre-training with Language and Task Adaptation for Multilingual Text Style Transfer. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 262–271). Dublin, Ireland: Association for Computational Linguistics.

  5. Caselli, T., & Nissim, M. (2022). Harvesting Perspectives in Social Media. In P. Vossen & A. Vossen (Eds.), Creating a More Transparent Internet: The Perspective Web (pp. 244–259). Cambridge University Press.

  6. Lang, I., Plas, L., Nissim, M., & Gatt, A. (2022). Visually Grounded Interpretation of Noun-Noun Compounds in English. In E. Chersoni, N. Hollenstein, C. Jacobs, Y. Oseki, L. Prévot, & E. Santus (Eds.), Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics (pp. 23–35). Dublin, Ireland: Association for Computational Linguistics.

  7. Lai, H., Mao, J., Toral, A., & Nissim, M. (2022). Human Judgement as a Compass to Navigate Automatic Metrics for Formality Transfer. In A. Belz, M. Popović, E. Reiter, & A. Shimorina (Eds.), Proceedings of the 2nd Workshop on Human Evaluation of NLP Systems (HumEval) (pp. 102–115). Dublin, Ireland: Association for Computational Linguistics.

  8. de Graaf, E., Stopponi, S., Bos, J. K., Peels-Matthey, S., & Nissim, M. (2022). AGILe: The First Lemmatizer for Ancient Greek Inscriptions. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, … S. Piperidis (Eds.), Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 5334–5344). Marseille, France: European Language Resources Association.

  9. Lai, H., & Nissim, M. (2022). Multi-Figurative Language Generation. In N. Calzolari, C.-R. Huang, H. Kim, J. Pustejovsky, L. Wanner, K.-S. Choi, … S.-H. Na (Eds.), Proceedings of the 29th International Conference on Computational Linguistics (pp. 5939–5954). Gyeongju, Republic of Korea: International Committee on Computational Linguistics.

  10. Minnema, G., Gemelli, S., Zanchi, C., Caselli, T., & Nissim, M. (2022). Dead or Murdered? Predicting Responsibility Perception in Femicide News Reports. In Y. He, H. Ji, S. Li, Y. Liu, & C.-H. Chang (Eds.), Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 1078–1090). Online only: Association for Computational Linguistics.

  11. Minnema, G., Ruggiero, G., Bartl, M., Gemelli, S., Caselli, T., Zanchi, C., … Nissim, M. (2022). Responsibility Framing under the Magnifying Lens of NLP: The Case of Gender-based Violence and Traffic Danger. Computational Linguistics in the Netherlands Journal, 12, 207–233.

  12. Nissim, M., & Pannitto, L. (2022). Che cos’è la linguistica computazionale (p. 128). Le Bussole, Carocci editore.

2021


  1. de Vries, W., & Nissim, M. (2021). As Good as New. How to Successfully Recycle English GPT-2 to Make Models for Other Languages. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 836–846). Online: Association for Computational Linguistics.

  2. Messina, L., Busso, L., Combei, C. R., Miaschi, A., Pannitto, L., Sarti, G., & Nissim, M. (2021). A dissemination workshop for introducing young Italian students to NLP. In D. Jurgens, V. Kolhatkar, L. Li, M. Mieskes, & T. Pedersen (Eds.), Proceedings of the Fifth Workshop on Teaching NLP (pp. 52–54). Online: Association for Computational Linguistics.

  3. Pannitto, L., Busso, L., Combei, C. R., Messina, L., Miaschi, A., Sarti, G., & Nissim, M. (2021). Teaching NLP with Bracelets and Restaurant Menus: An Interactive Workshop for Italian Students. In D. Jurgens, V. Kolhatkar, L. Li, M. Mieskes, & T. Pedersen (Eds.), Proceedings of the Fifth Workshop on Teaching NLP (pp. 160–170). Online: Association for Computational Linguistics.

  4. de Vries, W., Bartelds, M., Nissim, M., & Wieling, M. (2021). Adapting Monolingual Models: Data can be Scarce when Language Similarity is High. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 4901–4907). Online: Association for Computational Linguistics.

  5. Lai, H., Toral, A., & Nissim, M. (2021). Thank you BART! Rewarding Pre-Trained Models Improves Formality Style Transfer. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers) (pp. 484–494). Online: Association for Computational Linguistics.

  6. De Mattei, L., Lai, H., Dell’Orletta, F., & Nissim, M. (2021). Human Perception in Natural Language Generation. In A. Bosselut, E. Durmus, V. P. Gangal, S. Gehrmann, Y. Jernite, L. Perez-Beltrachini, … W. Xu (Eds.), Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021) (pp. 15–23). Online: Association for Computational Linguistics.

  7. Caselli, T., Schelhaas, A., Weultjes, M., Leistra, F., van der Veen, H., Timmerman, G., & Nissim, M. (2021). DALC: the Dutch Abusive Language Corpus. In A. Mostafazadeh Davani, D. Kiela, M. Lambert, B. Vidgen, V. Prabhakaran, & Z. Waseem (Eds.), Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021) (pp. 54–66). Online: Association for Computational Linguistics.

  8. Lai, H., Toral, A., & Nissim, M. (2021). Generic resources are what you need: Style transfer tasks without task-specific parallel training data. In M.-F. Moens, X. Huang, L. Specia, & S. W.-tau Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 4241–4254). Online and Punta Cana, Dominican Republic: Association for Computational Linguistics.

  9. Minnema, G., & Nissim, M. (2021). Breeding Fillmore’s Chickens and Hatching the Eggs: Recombining Frames and Roles in Frame-Semantic Parsing. In S. Zarrieß, J. Bos, R. van Noord, & L. Abzianidze (Eds.), Proceedings of the 14th International Conference on Computational Semantics (IWCS) (pp. 155–165). Groningen, The Netherlands (online): Association for Computational Linguistics.

  10. Minnema, G., Gemelli, S., Zanchi, C., Patti, V., Caselli, T., Nissim, M., & others. (2021). Frame semantics for social NLP in Italian: Analyzing responsibility framing in femicide news reports. Proceedings of the Seventh Italian Conference on Computational Linguistics (CLiC-It 2021), 3033, 1–8. CEUR-WS.

2020


  1. Nissim, M., van Noord, R., & van der Goot, R. (2020). Fair Is Better than Sensational: Man Is to Doctor as Woman Is to Doctor. Computational Linguistics, 46, 487–497.

  2. de Vries, W., van Cranenburgh, A., & Nissim, M. (2020). What’s so special about BERT’s layers? A closer look at the NLP pipeline in monolingual and multilingual models. In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 4339–4350). Online: Association for Computational Linguistics.

  3. De Mattei, L., Cafagna, M., Dell’Orletta, F., Nissim, M., & Guerini, M. (2020). Geppetto carves italian into a language model. Proceedings of CLiC-It 2020.

  4. Haagsma, H., Bos, J., & Nissim, M. (2020). MAGPIE: A Large Corpus of Potentially Idiomatic Expressions. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, … S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 279–287). Marseille, France: European Language Resources Association.

  5. van Rosendaal, J., Caselli, T., & Nissim, M. (2020). Lower Bias, Higher Density Abusive Language Datasets: A Recipe. In J. Monti, V. Basile, M. P. D. Buono, R. Manna, A. Pascucci, & S. Tonelli (Eds.), Proceedings of the Workshop on Resources and Techniques for User and Author Profiling in Abusive Language (pp. 14–19). Marseille, France: European Language Resources Association (ELRA).

  6. De Mattei, L., Cafagna, M., Dell’Orletta, F., & Nissim, M. (2020). Invisible to People but not to Machines: Evaluation of Style-aware HeadlineGeneration in Absence of Reliable Human Judgment. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, … S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 6709–6717). Marseille, France: European Language Resources Association.

  7. Masini, F., Micheli, M. S., Zaninello, A., Castagnoli, S., & Nissim, M. (2020). MWE_combinet_release_1. 0. Associazione Italiana di Linguistica Computazionale.

  8. Bartl, M., Nissim, M., & Gatt, A. (2020). Unmasking Contextual Stereotypes: Measuring and Mitigating BERT’s Gender Bias. In M. R. Costa-jussà, C. Hardmeier, W. Radford, & K. Webster (Eds.), Proceedings of the Second Workshop on Gender Bias in Natural Language Processing (pp. 1–16). Barcelona, Spain (Online): Association for Computational Linguistics.

  9. Bassignana, E., Nissim, M., & Patti, V. (2020). Personal-ity: a novel youtube-based corpus for personality prediction in Italian. Proceedings of CLiC-It 2020.

  10. Ruggiero, G., Gatt, A., & Nissim, M. (2020). Datasets and Models for Authorship Attribution on Italian Personal Writings. Proceedings of CLiC-It 2020.

  11. Bassignana, E., Nissim, M., & Patti, V. (2020). Matching Theory and Data with Personal-ITY: What a Corpus of Italian YouTube Comments Reveals About Personality. In M. Nissim, V. Patti, B. Plank, & E. Durmus (Eds.), Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media (pp. 11–22). Barcelona, Spain (Online): Association for Computational Linguistics.

  12. Cimino, A., Dell’Orletta, F., & Nissim, M. (2020). TAG-it@ EVALITA 2020: Overview of the Topic, Age, and Gender Prediction Task for Italian. Evaluation Campaign of Natural Language Processing and Speech Tools for Italian.

  13. De Mattei, L., Cafagana, M., Dell’Orletta, F., Nissim, M., & Gatt, A. (2020). Change-it@ evalita 2020: Change headlines, adapt news, generate. Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. European Language Resources Association (ELRA).

  14. Mattei, L. D., Cafagna, M., Lai, H., Dell’Orletta, F., Nissim, M., & Gatt, A. (2020). On the interaction of automatic evaluation and task framing in headline style transfer. In S. Agarwal, O. Dušek, S. Gehrmann, D. Gkatzia, I. Konstas, E. Van Miltenburg, & S. Santhanam (Eds.), Proceedings of the 1st Workshop on Evaluating NLG Evaluation (pp. 38–43). Online (Dublin, Ireland): Association for Computational Linguistics.

  15. Masini, F., Micheli, M. S., Zaninello, A., Castagnoli, S., & Nissim, M. (2020). Multiword expressions we live by: a validated usage-based dataset from corpora of written Italian. Italian Conference on Computational Linguistics 2020. CEUR-WS. org.

  16. Minnema, G., Remijnse, L., Bos, J., Caselli, T., Fokkens, A., Nissim, M., … Vossen, P. (2020). Towards reference-aware FrameNet representations: Bridging generic and specific event knowledge. GeCKo Symposium: Integrating Generic and Contextual Knowledge.

  17. Cafagna, M., De Mattei, L., & Nissim, M. (2020). Embeddings-based detection of word use variation in Italian newspapers. IJCoL. Italian Journal of Computational Linguistics, 6, 9–22.

2019


  1. Basile, A., Gatt, A., & Nissim, M. (2019). You Write like You Eat: Stylistic Variation as a Predictor of Social Stratification. In A. Korhonen, D. Traum, & Màrquez Lluı́s (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 2583–2593). Florence, Italy: Association for Computational Linguistics.

  2. Nieuwenhuis, M., & Nissim, M. (2019). The Contribution of Embeddings to Sentiment Analysis on YouTube. CLiC-It 2019.

  3. Cafagna, M., De Mattei, L., & Nissim, M. (2019). Embeddings Shifts as Proxies for Different Word Use in Italian Newspapers. CLiC-It 2019.

  4. Cafagna, M., De Mattei, L., Bacciu, D., & Nissim, M. (2019). Suitable Doesn’t Mean Attractive. Human-Based Evaluation of Automatically Generated Headlines. Proceedings of CLiC-It 2019.

  5. Haagsma, H., Nissim, M., & Bos, J. (2019). Casting a wide net: robust extraction of potentially idiomatic expressions. ArXiv Preprint ArXiv:1911.08829.

  6. De Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G., & Nissim, M. (2019). Bertje: A dutch bert model. ArXiv Preprint ArXiv:1912.09582.

  7. Haagsma, H., Kreutz, T., Medvedeva, M., Daelemans, W., & Nissim, M. (2019). Overview of the CLIN29 Shared Task on Cross-Genre Gender Prediction in Dutch. In Proceedings of the Shared Task on Cross-Genre Gender Prediction in Dutch at CLIN29 (GxG-CLIN29) (pp. 1–5). CEUR Proceedings 2453.

2018


  1. van der Goot, R., Ljubešić, N., Matroos, I., Nissim, M., & Plank, B. (2018). Bleaching Text: Abstract Features for Cross-lingual Gender Prediction. In I. Gurevych & Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 383–389). Melbourne, Australia: Association for Computational Linguistics.

  2. Kulmizev, A., Abdou, M., Ravishankar, V., & Nissim, M. (2018). Discriminator at SemEval-2018 Task 10: Minimally Supervised Discrimination. In M. Apidianaki, S. M. Mohammad, J. May, E. Shutova, S. Bethard, & M. Carpuat (Eds.), Proceedings of the 12th International Workshop on Semantic Evaluation (pp. 1008–1012). New Orleans, Louisiana: Association for Computational Linguistics.

  3. Haagsma, H., Nissim, M., & Bos, J. (2018). The Other Side of the Coin: Unsupervised Disambiguation of Potentially Idiomatic Expressions by Contrasting Senses. In A. Savary, C. Ramisch, J. D. Hwang, N. Schneider, M. Andresen, S. Pradhan, & M. R. L. Petruck (Eds.), Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018) (pp. 178–184). Santa Fe, New Mexico, USA: Association for Computational Linguistics.

  4. Basile, A., Dwyer, G., Medvedeva, M., Rawee, J., Haagsma, H., & Nissim, M. (2018). Simply the best: Minimalist system trumps complex models in author profiling. International Conference of the Cross-Language Evaluation Forum for European Languages, 143–156. Springer International Publishing Cham.

  5. Bai, X., Merenda, F., Zaghi, C., Caselli, T., & Nissim, M. (2018). Rug at germeval: Detecting offensive speech in German social media. Proceedings of GermEval 2018. Verlag der Österreichischen Akademie der Wissenschaften.

  6. Merenda, F., Zaghi, C., Caselli, T., & Nissim, M. (2018). Source-driven representations for hate speech detection. Proceedings of CLiC-It 2018.

  7. Basile, V., Novielli, N., Croce, D., Barbieri, F., Nissim, M., & Patti, V. (2018). Sentiment polarity classification at evalita: Lessons learned and open challenges. IEEE Transactions on Affective Computing, 12, 466–478.

  8. Dell’Orletta, F., & Nissim, M. (2018). Overview of the evalita 2018 cross-genre gender prediction (gxg) task. EVALITA Evaluation of NLP and Speech Tools for Italian.

  9. Basile, A., Caselli, T., Merenda, F., & Nissim, M. (2018). Facebook reactions as controversy proxies: Predictive models over Italian news. IJCoL. Italian Journal of Computational Linguistics, 4, 73–89.

  10. Bai, X., Merenda, F., Zaghi, C., Caselli, T., & Nissim, M. (2018). Rug at EVALITA 2018: Hate speech detection in italian social media. EVALITA 2018. CEUR Workshop Proceedings (CEUR-WS. org).

  11. Basili, R., Nissim, M., & Satta, G. (2018). CLiC-it 2017: A Retrospective. IJCoL. Italian Journal of Computational Linguistics, 4, 77–88.

2017


  1. Medvedeva, M., Haagsma, H., & Nissim, M. (2017). An analysis of cross-genre and in-genre performance for author profiling in social media. Experimental IR Meets Multilinguality, Multimodality, and Interaction: 8th International Conference of the CLEF Association, CLEF 2017, Dublin, Ireland, September 11–14, 2017, Proceedings 8, 211–223. Springer International Publishing.

  2. van der Goot, R., Plank, B., & Nissim, M. (2017). To normalize, or not to normalize: The impact of normalization on Part-of-Speech tagging. In L. Derczynski, W. Xu, A. Ritter, & T. Baldwin (Eds.), Proceedings of the 3rd Workshop on Noisy User-generated Text (pp. 31–39). Copenhagen, Denmark: Association for Computational Linguistics.

  3. Kulmizev, A., Blankers, B., Bjerva, J., Nissim, M., van Noord, G., Plank, B., & Wieling, M. (2017). The power of character n-grams in native language identification. Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, 382–389.

  4. Nissim, M., Abzianidze, L., Evang, K., Van Der Goot, R., Haagsma, H., Plank, B., & Wieling, M. (2017). Sharing is caring: The future of shared tasks. Computational Linguistics, 43, 897–904.

  5. Basile, P., Nissim, M., Patti, V., Sprugnoli, R., & Cutugno, F. (2017). EVALITA Goes Social: Tasks, Data, and Community at the 2016 Edition. ITALIAN JOURNAL OF COMPUTATIONAL LINGUISTICS, 2017, 93–127.

  6. Haagsma, H., & Nissim, M. (2017). A Critical Assessment of a Method for Detecting Diachronic Meaning Shifts: Lessons Learnt from Experiments on Dutch. Computational Linguistics in the Netherlands Journal, 7, 65–78.

  7. Nissim, M., & Patti, V. (2017). Semantic aspects in sentiment analysis. In Sentiment analysis in social networks (pp. 31–48). Morgan Kaufmann.

  8. Nissim, M., & Pietrandrea, P. (2017). MODAL: A multilingual corpus annotated for modality. Proceedings of the Fourth Italian Conference on Computational Linguistics (CLiC-It 2017), CEUR Proceedings, 2006.

  9. Basile, A., Caselli, T., & Nissim, M. (2017). Predicting Controversial News Using Facebook Reactions. Proceedings of the Fourth Italian Conference on Computational Linguistics (CLiC-It 2017), CEUR Proceedings, 2006.

  10. Basile, P., Basile, V., Nissim, M., Novielli, N., Patti, V., & others. (2017). Sentiment Analysis of Microblogging Data. In Encyclopedia of Social Network Analysis and Mining (pp. 1–17). Springer Science+ Business Media.

  11. Lenci, A., Masini, F., Nissim, M., Castagnoli, S., Lebani, G. E., Passaro, L. C., & Senaldi, M. S. G. (2017). How to harvest Word Combinations from corpora: Methods, evaluation and perspectives. Studi e Saggi Linguistici, 55, 45–68.

  12. Basile, A., Dwyer, G., Medvedeva, M., Rawee, J., Haagsma, H., & Nissim, M. (2017). N-gram: New groningen author-profiling model. Working Notes of CLEF 2017-Conference and Labs of the Evaluation Forum.

2016


  1. Sara, C., Lebani, G., Francesca, M., Malvina, N., Lucia, P., & others. (2016). POS-patterns or Syntax? Comparing methods for extracting Word Combinations. In Computerised and corpus-based approaches to phraseology: Monolingual and multilingual perspectives (pp. 116–128). Tradulex.

  2. Kreutz, T., & Nissim, M. (2016). Catching Events in the Twitter Stream: A Showcase of Student Projects. SIDEWAYS@LREC, 14–18.

  3. Kloppenburg, L., & Nissim, M. (2016). Leveraging Native Data to Correct Preposition Errors in Learners’ Dutch. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 2819–2824.

  4. op Vollenbroek, M. B., Carlotto, T., Kreutz, T., Medvedeva, M., Pool, C., Bjerva, J., … Nissim, M. (2016). Gronup: Groningen user profiling. Notebook for PAN at CLEF.

  5. Pool, C., & Nissim, M. (2016). Distant supervision for emotion detection using Facebook reactions. In M. Nissim, V. Patti, & B. Plank (Eds.), Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES) (pp. 30–39). Osaka, Japan: The COLING 2016 Organizing Committee.

  6. Plank, B., & Nissim, M. (2016). When silver glitters more than gold: Bootstrapping an Italian part-of-speech tagger for Twitter. Proceedings of EVALITA 2016.

  7. Del Tredici, M., Nissim, M., & Zaninello, A. (2016). Tracing metaphors in time through self-distance in vector spaces. Proceedings of CLiC-It 2016.

  8. Barbieri, F., Basile, V., Croce, D., Nissim, M., Novielli, N., Patti, V., & others. (2016). Overview of the evalita 2016 sentiment polarity classification task. CEUR Workshop Proceedings, 1749. CEUR-WS.

  9. Kloppenburg, L., & Nissim, M. (2016). Native-data models for detecting and correcting errors in learners’ Dutch. Computational Linguistics in the Netherlands Journal, 6, 39–55.

  10. Nissim, M., Patti, V., & Plank, B. (2016). Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES). Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES).

  11. Ghia, E., Kloppenburg, L., Nissim, M., Pietrandrea, P., & Cervoni, V. (2016). A construction-centered approach to the annotation of modality. Bunt, H.(a Cura Di), Proceedings of the 12th ISO Workshop on Interoperable Semantic Annotation. Portoroz, 29.

  12. Basile, P., Cutugno, F., Nissim, M., Patti, V., Sprugnoli, R., & others. (2016). Preface to the EVALITA 2016 Proceedings. CEUR WORKSHOP PROCEEDINGS, 1749. CEUR-WS.

  13. Basile, P., Cutugno, F., Nissim, M., Patti, V., Sprugnoli, R., & others. (2016). EVALITA 2016: Overview of the 5th evaluation campaign of natural language processing and speech tools for Italian. CEUR Workshop Proceedings, 1749, 1–4. CEUR-WS.

2015


  1. Bos, J., & Nissim, M. (2015). Uncovering Noun-Noun Compound Relations by Gamification. In B. Megyesi (Ed.), Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) (pp. 251–255). Vilnius, Lithuania: Linköping University Electronic Press, Sweden.

  2. Lenci, A., Lebani, G., Senaldi, M., Castagnoli, S., Masini, F., & Nissim, M. (2015). Mapping the Constructicon with SYMPAThy. Italian Word Combinations between fixedness and productivity. CEUR Workshop Proceedings, 1347, 144–149. CEUR-WS. org.

  3. Hürlimann, M., Weck, B., van den Berg, E., Suster, S., & Nissim, M. (2015). GLAD: Groningen Lightweight Authorship Detection. CLEF (Working Notes). Toulouse.

  4. Basile, P., Basile, V., Nissim, M., & Novielli, N. (2015). Deep tweets: from entity linking to sentiment analysis. Proceedings of the Italian Computational Linguistics Conference (CLiC-It 2015).

  5. Nissim, M., Castagnoli, S., Masini, F., Gianluca, L., & Passaro, L. (2015). Automatic extraction of Word Combinations from corpora: evaluating methods and benchmarks. Proceedings of the Second Italian Conference on Computational Linguistics CLiC-It 2015. Academia University Press.

  6. Pavlick, E., Bos, J., Nissim, M., Beller, C., Van Durme, B., & Callison-Burch, C. (2015). Adding Semantics to Data-Driven Paraphrasing. In C. Zong & M. Strube (Eds.), Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 1512–1522). Beijing, China: Association for Computational Linguistics.

2014


  1. Nissim, M., Castagnoli, S., & Masini, F. (2014). Extracting MWEs from Italian corpora: A case study for refining the POS-pattern methodology. In V. Kordoni, M. Egg, A. Savary, E. Wehrli, & S. Evert (Eds.), Proceedings of the 10th Workshop on Multiword Expressions (MWE) (pp. 57–61). Gothenburg, Sweden: Association for Computational Linguistics.

  2. Bjerva, J., Bos, J., van der Goot, R., & Nissim, M. (2014). The Meaning Factory: Formal Semantics for Recognizing Textual Entailment and Determining Semantic Similarity. In P. Nakov & T. Zesch (Eds.), Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014) (pp. 642–646). Dublin, Ireland: Association for Computational Linguistics.

  3. Lenci, A., Lebani, G. E., Castagnoli, S., Masini, F., & Nissim, M. (2014). SYMPAThy: Towards a comprehensive approach to the extraction of Italian Word Combinations. Proceedings of the First Italian Conference on Computational Linguistics CLiC-It 2014 & and of the Fourth International Workshop EVALITA 2014: 9-11 December 2014, Pisa, 234–238. Pisa University Press.

  4. Basile, V., Bolioli, A., Nissim, M., Patti, V., & Rosso, P. (2014). Overview of the Evalita 2014 SENTIment POLarity Classification Task. Proceedings of EVALITA 2014, 50–57.

  5. Del Tredici, M., & Nissim, M. (2014). A Modular System for Rule-based Text Categorisation. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson, B. Maegaard, J. Mariani, … S. Piperidis (Eds.), Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14). Reykjavik, Iceland: European Language Resources Association (ELRA).

  6. Mariotti, A., & Nissim, M. (2014). Parting ways with the partitive view: a corpus-based account of the Italian particle “ne.” Proceedings of the First Italian Conference on Computational Linguistics CLiC-It 2014 & and of the Fourth International Workshop EVALITA, 249–253.

  7. Basile, V., Bolioli, A., Nissim, M., Patti, V., & Rosso, P. (2014). Evalita 2014 Sentipolc task: Task guidelines. Technical report.

  8. Basile, V., Bolioli, A., Bosco, C., Nissim, M., Patti, V., Rosso, P., … others. (2014). Evalita 2014: Sentipolc Twitter dataset. Dipartimento di Informatica, Università degli Studi di Torino.

  9. Castagnoli, S., Nissim, M., Masini, F., & others. (2014). Metodi e risorse computazionali per l’estrazione di combinazioni di parole da corpora. Alma Mater Studiorum-Università di Bologna.

2013


  1. Nissim, M., Pietrandrea, P., Sansò, A., & Mauri, C. (2013). Cross-linguistic annotation of modality: a data-driven hierarchical model. Proceedings of the 9th Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation, 7–14.

  2. Oltramari, A., Vetere, G., Chiari, I., Jezek, E., Zanzotto, F. M., Nissim, M., & Gangemi, A. (2013). Senso Comune: A collaborative knowledge resource for italian. In The People’s Web Meets NLP: Collaboratively Constructed Language Resources (pp. 45–67). Springer Berlin Heidelberg.

  3. Basile, V., & Nissim, M. (2013). Sentiment analysis on Italian tweets. Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 100–107.

  4. Nissim, M., & Zaninello, A. (2013). A Repository of Variation Patterns for Multiword Expressions. Proceedings of the 9th Workshop on Multiword Expressions, 101–105.

  5. Nissim, M., & Zaninello, A. (2013). Modeling the internal variability of multiword expressions through a pattern-based method. ACM Transactions on Speech and Language Processing (TSLP), 10, 1–26.

2012


  1. Bos, J., Evang, K., & Nissim, M. (2012). Annotating semantic roles in a lexicalised grammar environment. Proceedings of the Eighth Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-8), 9–12.

2011


  1. Grandi, N., Nissim, M., & Tamburini, F. (2011). Noun-clad adjectives. On the adjectival status of non-head constituents of Italian attributive compounds. Lingue e Linguaggio, 10, 161–160.

  2. Nissim, M., & Zaninello, A. (2011). A quantitative study on the morphology of Italian multiword expressions. Lingue e Linguaggio, 10, 283–300.

2010


  1. Zaninello, A., & Nissim, M. (2010). Creation of Lexical Resources for a Characterisation of Multiword Expressions in Italian. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, … D. Tapias (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). Valletta, Malta: European Language Resources Association (ELRA).

2009


  1. Markert, K., & Nissim, M. (2009). Data and models for metonymy resolution. Language Resources and Evaluation, 43, 123–138.

  2. Celli, F., & Nissim, M. (2009). Automatic identification of semantic relations in Italian complex nominals. In H. Bunt (Ed.), Proceedings of the Eight International Conference on Computational Semantics (pp. 45–60). Tilburg, The Netherlands: Association for Computational Linguistics.

  3. Nissim, M., & Bos, J. (2009). Using the Web as a Corpus in Natural Language Processing. In Linguistica e Modelli Tecnologici di Ricerca (pp. 345–351). Bulzoni.

  4. Bos, J., Nissim, M., Ahn, B. G., Clark, S., Haggerty, J., Herbelot, A., & Zhang, Y. (2009). From shallow to deep Natural language processing: A hands-on tutorial. Springer.

  5. Calhoun, S., Carletta, J., Jurafsky, D., Nissim, M., Ostendorf, M., & Zaenen, A. (2009). NXT switchboard annotations. Linguistic Data Consortium Corpus.

2008


  1. Bos, J., & Nissim, M. (2008). Combining discourse representation theory with FrameNet. Frames, Corpora, and Knowledge Representation, 169–183.

  2. Nissim, M., & Perboni, S. (2008). The Italian Particle “ne”: Corpus Construction and Analysis. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, & D. Tapias (Eds.), Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08). Marrakech, Morocco: European Language Resources Association (ELRA).

  3. Grover, C., Klein, E., Manning, C., Markert, K., & Nissim, M. (2008). Machine learning of entity recognizers for modular retargetable natural language processing. University of Edinburgh.

2007


  1. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., & Catenacci, C. (2007). C-ODO: an OWL Meta-model for Collaborative Ontology Design. In N. Noy, H. Alani, G. Stumme, P. Mika, Y. Sure, & D. Vrandecic (Eds.), Proceedings of the Workshop on Social and Collaborative Construction of Structured Knowledge (CKC 2007) (Vol. 273).

  2. Markert, K., & Nissim, M. (2007). SemEval-2007 Task 08: Metonymy Resolution at SemEval-2007. In E. Agirre, Màrquez Lluı́s, & R. Wicentowski (Eds.), Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007) (pp. 36–41). Prague, Czech Republic: Association for Computational Linguistics.

  3. Markert, K., & Nissim, M. (2007). Metonymy resolution at semeval i: Guidelines for participants. Association for Computational Linguistics.

  4. Bos, J., & Nissim, M. (2007). Answer Translation: An Alternative Approach to Cross-Lingual Question Answering. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, … M. Stempfhuber (Eds.), Evaluation of Multilingual and Multi-modal Information Retrieval (pp. 290–299). Berlin, Heidelberg: Springer Berlin Heidelberg.

  5. Bos, J., Nissim, M., & others. (2007). Are two heads better than one? Experiments with Italian part-of-speech labelling. Intelligenza Artificiale, 4, 18–19.

2006


  1. Markert, K., & Nissim, M. (2006). Metonymic proper names: A corpus-based account. In A. Stefanowitsch & S. T. Gries (Eds.), Corpora in Cognitive Linguistics - Corpus-Based Approaches to Syntax and Lexis. Volume I: Metaphor and Metonymy (pp. 152–174). Mouton de Gruyter.

  2. Bos, J., & Nissim, M. (2006). An Empirical Approach to the Interpretation of Superlatives. In D. Jurafsky & E. Gaussier (Eds.), Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (pp. 9–17). Sydney, Australia: Association for Computational Linguistics.

  3. Bos, J., & Nissim, M. (2006). Cross-Lingual Question Answering by Answer Translation. CLEF (Working Notes).

  4. Alex, B., Nissim, M., & Grover, C. (2006). The Impact of Annotation on the Performance of Protein Tagging in Biomedical Text. In N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard, J. Mariani, J. Odijk, & D. Tapias (Eds.), Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06). Genoa, Italy: European Language Resources Association (ELRA).

  5. Nissim, M. (2006). Learning Information Status of Discourse Entities. In D. Jurafsky & E. Gaussier (Eds.), Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (pp. 94–102). Sydney, Australia: Association for Computational Linguistics.

  6. Iglesias, M., Caracciolo, C., Jaques, Y., Sini, M., Calderini, F., Keizer, J., … others. (2006). User requirements for the fisheries stock depletion alert system. (Rome)(Italy).

  7. Catenacci, C., Gangemi, A., Lehmann, J., Nissim, M., Presutti, V., Steve, G., … others. (2006). Design rationales for collaborative development of networked ontologies state of the art and the collaborative ontology design ontology. EU Horizon.

  8. Iglesias, M., Caracciolo, C., Jaques, Y., Sini, M., Calderini, F., Keizer, J., … Gangemi, A. (2006). WP7 User requirements for the fisheries stock depletion alert system.

2005


  1. Finkel, J., Dingare, S., Manning, C. D., Nissim, M., Alex, B., & Grover, C. (2005). Exploring the boundaries: gene and protein identification in biomedical text. BMC Bioinformatics, 6, 1–9.

  2. Markert, K., & Nissim, M. (2005). Comparing Knowledge Sources for Nominal Anaphora Resolution. Computational Linguistics, 31, 367–402.

  3. Dingare, S., Nissim, M., Finkel, J., Manning, C., & Grover, C. (2005). A system for identifying named entities in biomedical text: how results from two evaluations reflect on both the system and the evaluations. Comparative and Functional Genomics, 6, 77–85.

  4. Calhoun, S., Nissim, M., Steedman, M., & Brenier, J. (2005). A Framework for Annotating Information Structure in Discourse. In A. Meyers (Ed.), Proceedings of the Workshop on Frontiers in Corpus Annotations II: Pie in the Sky (pp. 45–52). Ann Arbor, Michigan: Association for Computational Linguistics.

  5. Ahn, K., Bos, J., Kor, D., Nissim, M., Webber, B. L., & Curran, J. R. (2005). Question Answering with QED at TREC 2005. Proceedings of TREC.

  6. Nissim, M., & Markert, K. (2005). Learning to buy a Renault and talk to BMW: A supervised approach to conventional metonymy. International Workshop on Computational Semantics (IWCS 2005).

2004


  1. Finkel, J., Dingare, S., Nguyen, H., Nissim, M., Manning, C., & Sinclair, G. (2004). Exploiting Context for Biomedical Entity Recognition: From Syntax to the Web. In N. Collier, P. Ruch, & A. Nazarenko (Eds.), Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP) (pp. 91–94). Geneva, Switzerland: COLING.

  2. Nissim, M., Dingare, S., Carletta, J., & Steedman, M. (2004). An Annotation Scheme for Information Status in Dialogue. In M. T. Lino, M. F. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04). Lisbon, Portugal: European Language Resources Association (ELRA).

  3. Nissim, M., Matheson, C., Reid, J., & others. (2004). Recognising geographical entities in Scottish historical documents. Proceedings of the Workshop on Geographic Information Retrieval at SIGIR 2004, 35.

  4. Carletta, J., Dingare, S., Nissim, M., & Nikitina, T. (2004). Using the NITE XML Toolkit on the Switchboard Corpus to Study Syntactic Choice: a Case Study. In M. T. Lino, M. F. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04). Lisbon, Portugal: European Language Resources Association (ELRA).

  5. Hachey, B., Nguyen, H., Nissim, M., Alex, B., & Grover, C. (2004). Grounding gene mentions with respect to gene database identifiers. BioCreAtIvE Workshop Handouts.

  6. Nissim, M., & others. (2004). Lexical information and choice of determiners. In Possessives and Beyond (pp. 133–152). GLSA Publications.

2003


  1. Markert, K., Nissim, M., & Modjeska, N. (2003). Using the web for nominal anaphora resolution. Proc. 10th European Chapter of the Association for Computational Linguistics (EACL 03) Workshop on the Computational Treatment of Anaphora, 39–46.

  2. Modjeska, N. N., Markert, K., & Nissim, M. (2003). Using the Web in Machine Learning for Other-Anaphora Resolution. Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, 176–183.

  3. Nissim, M., & Markert, K. (2003). Syntactic features and word similarity for supervised metonymy resolution. Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, 56–63.

  4. Markert, K., & Nissim, M. (2003). Corpus-based metonymy analysis. Metaphor and Symbol, 18, 175–188.

  5. Nissim, M. (2003). The role of metonymy in named entity recognition. In A. G. Ramat & E. Rigotti (Eds.), Linguistics and the New Professions. FrancoAngeli.

2002


  1. Markert, K., & Nissim, M. (2002). Towards a Corpus Annotated for Metonymies: the Case of Location Names. In González Rodrı́guez Manuel & C. P. Suarez Araujo (Eds.), Proceedings of the Third International Conference on Language Resources and Evaluation (LREC’02). Las Palmas, Canary Islands - Spain: European Language Resources Association (ELRA).

  2. Markert, K., & Nissim, M. (2002). Metonymy Resolution as a Classification Task. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), 204–213. Association for Computational Linguistics.

  3. Bresnan, J., Carletta, J., Crouch, R., Nissim, M., Steedman, M., Wasow, T., & Zaenen, A. (2002). Paraphrase analysis for improved generation, Stanford-link project. Stanford, CA: HRCR Edinburgh-CLSI Stanford.

2001


  1. Poesio, M., & Nissim, M. (2001). Salience and possessive NPs: the effect of animacy and pronominalization. Proc. of AMLAP (Poster Session).

  2. Nissim, M. (2001). Underlying relations in genitives and bridging. In Pragmatics in 2000 (pp. 445–457). International Pragmatics Association.

  3. Nissim, M. (2001). Bridging Definites and Possessives: Distribution of Determiners in Anaphoric Noun Phrases (PhD thesis). Università degli Studi di Pavia.

2000


  1. Nissim, M. (2000). On the referential role of genitives. In C. Piliere (Ed.), Proceedings of the ESSLLI Student Session.

1999


  1. Nissim, M., Sansò, A., & Soria, C. (1999). Towards a compositional frame semantics. In S. Bagnara (Ed.), Proceedings of the European Conference on Cognitive Science (ECCS99).